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Abstract—Interaction topology through which agents achieve
collaboration in multi-agent systems is of fundamental impor-
tance. Recently, many efforts have been devoted to the problem
of topology inference, e.g., the trajectory information of mobile
agents is utilized to regress the topology. In this paper, we develop
a distributed topology-preserving collaboration algorithm for
multi-agent systems against topology inference attacks. The
novelties lie in that: i) By adding well-designed noises to the
system states, the irregularity of the state evolution is largely
enhanced, making the underlying topology hard to be inferred
accurately from the observations over the system; ii) By dividing
the added noises into the random and the disturbing terms
with mutual compensation properties, the proposed algorithm
guarantees the convergence of the system state, which applies
to both undirected and directed topology structures. Specifically,
the mean square convergence rate and the non-asymptotic error
bound are derived. Extensive simulations are conducted to
illustrate the effectiveness of our algorithm.

I. INTRODUCTION

Multi-agent systems (MASs) have been widely used in
applications such as distributed computing [1], sensor net-
works [2], multi-robot systems [3], and data aggregation [4].
The interaction topology of MASs, which characterizes the
ability of agents to interact with others, is essential for agents
to achieve efficient consensus-based collaboration. Besides,
the topology will affect the autonomy, adaptation, scalability,
and efficiency of the MASs [5]. Due to its significance, the
research on the topology of MASs has received great attention
from researchers in various areas, including computer science,
communication, and control theory [6].

Currently, there are fruitful research results on topology
inference. For instance, [7] computes the states of the agents
by an iterative root-searching method driven by a maximum
likelihood function, and [8] focuses on inferring the directed
network topology under unmeasurable latent inputs. In addi-
tion, optimization methods are also widely used in topology
inference, aiming to infer the topology quickly and accurately.
In this context, the outside observers can obtain the topology
by collecting a set of observation data and then solving a
well-formulated regression problem. Unfortunately, all these
methods can also be employed by malicious adversaries to
infer the topology within the system (we call it a topology
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inference attack). Once the topology is accurately inferred,
the adversary can launch further premeditated attacks on a
certain critical agent in the MASs to drive the system into a
state of paralysis. Taking multiple mobile agents as an example
[9], an outside attacker can observe the moving trajectory of
the agents and infer their internal topology structure by the
aforementioned methods. Then, the attacker obtains critical
guidance to incapacitate the target agent and largely deteriorate
the collaboration performance of the MASs. Therefore, it
is necessary for MASs to design the topology-preserving
collaboration algorithms against topology inference attacks.

To counter such attacks, researchers have dug deeply and
proposed a series of defense mechanisms, where the consensus
algorithm is a fundamental tool to ensure MASs’ collaboration
performance. These methods can be divided into two main
categories: dynamic topologies and noise-adding algorithms.
In the former kind of studies, the interaction topology of the
agents changes from time to time, which notably increases
the difficulty for the external attackers to infer an accurate and
stable topology. In the pursuit of the consensus in MASs under
these topologies, the key is to design appropriate protocols
that can guarantee the group of agents reach the consensus
point on the shared information with limited and unreliable
information exchange and switching topologies [10]–[12]. The
drawbacks of these methods origin from their potentially
high resource consumption due to the frequent changes of
topologies. Additionally, their strong dependence on the sys-
tems imposes critical restrictions on the connectivity of the
interaction topology. The noise-adding based methods are also
commonly used to secure the internal information of MASs
[13]–[16]. The main idea is to impose additional noisy signals
on agents’ states during the collaboration period, thereby
hiding the true information from the attackers. Nevertheless,
most noise-adding algorithms deal with data privacy that pays
more attention to the privacy of every single node rather
than the preservation of the system’s topology that focuses on
hiding the overall network structure from external observers.

Motivated by the above observations, in this paper, we
propose a hybrid distributed topology-preserving collaboration
algorithm (hybrid DTCA). It is effective in concealing the
actual topology structure from the outside inference attack
while guaranteeing collaboration convergence. The challenges
lie in how to design the extra noises in a distributed way while
causing the maximum inference attack degradation. The main
contributions of our work are listed as follows:
• To protect the system topology from being accurately



inferred by the observers, we investigate a related col-
laboration algorithm and propose a novel hybrid noise-
adding mechanism that leverages a random term and a
disturbing term to enhance the irregularity of the state
evolution.

• By exploiting the convergence conditions of the system
collaboration, we design a distributed disturbing noise
that is added in a pair-wise fashion to compensate with
former noises. With the noise decaying adaptively with
iterations, the mean square convergence rate and the
proposed mechanism are derived.

• We further prove that the proposed algorithm largely
degrades the topology inference accuracy of the attackers,
while maintaining the convergence of the system states.
Representative simulation examples demonstrate the ef-
fectiveness of the hybrid DTCA.

The rest parts of the paper are organized as follows: Sec.
II provides some preliminary knowledge and formulates the
problem. The proposed algorithm and its performance analysis
are in Sec. III and Sec. IV. Sec. V shows the simulation and
comparison results. Finally, Sec. VI concludes the work.

II. PRELIMINARIES

Let G = (V, E) be a directed and connected graph that
models the topology information within the multi-agent sys-
tem, where V = {1, . . . , N} is the set of nodes and E ⊆ V×V
denotes the set of edges. Each node represents an agent,
and each weighted edge represents an information exchange
channel. The adjacency matrix A = [aij ]N×N of a graph
G with N agents specifies the interconnection topology of
the system, where aij > 0 if and only if (i, j) ∈ E , else
aij = 0. Let Ni = {j ∈ V : aij 6= 0} be the neighbor
set of agent i, and di = |Ni| as its in-degree. Let 1 be an
all-one column vector and 0 be an all-zero column vector
with compatible dimensions. Let N+ be the set of positive
integers, ‖ · ‖ and ‖ · ‖F represent the spectral norm and
Frobenius norm of a matrix, respectively. For two real-valued
functions f1 and f2, f1(x) = O(f2(x)) as x → x0 means
limx→x0

|f1(x)/f2(x)| <∞.

A. System Model

Consider N agents collaborate to fulfill a common task,
where the consensus algorithm is widely adopted to drive
all agents to reach a common state, consequently producing
collective behaviors. Denote by xi the state of agent i, and the
dynamics of agent i under the consensus-based collaboration
algorithm is described by:

xi(k + 1) = xi(k) +
∑
j∈Ni

wij(xj(k)− xi(k)), (1)

where wij is the interaction weight between i and j, and is
related to aij . Many popular rules can be adopted to set wij ,
using Laplacian rule for example, we have

wij =

{
γaij/dmax, i 6= j,

1−
∑

j∈Ni

wij , i = j,
(2)

where the auxiliary parameter γ satisfies 0 < γ < 1, and the
largest in-degree dmax = max{di, i ∈ V}.

Accordingly, the interaction topology matrix is given by
W = [wij ]N×N . Then, the global form of the system dy-
namics is given by

x(k + 1) = Wx(k), y(k) = x(k) + v(k), (3)

where v(k) is i.i.d. Gaussian noise, satisfying v(k) ∼
N (0, σ2

vI). Let λi be the i-th eigenvalue of W , ordered as
|λ1| ≥ |λ2| ≥ · · · ≥ |λN |. Since W is a row-stochastic matrix,
λ1 = 1 and the corresponding right eigenvector of λ1 is 1.
By the consensus-based algorithm (3), the states of the agents
converge to common value, given by [4]:

lim
k→∞

xi(k) = xc = pT1x(0),∀i ∈ V, (4)

where p1 is the normalized left eigenvector associated with
λ1, and xc is a constant representing the consensus point.
Furthermore, if W is a doubly-stochastic matrix, one has
xc = 1

N

∑
i∈V xi(0), i.e., an average consensus is achieved.

Let z(k) = x(k) − xc1 be the convergence error, and the
mean square convergence rate ρ is defined as [16],

ρ , lim
k→∞

sup
z(0)6=0

(
E[z(k)Tz(k)]

z(0)Tz(0)

) 1
k

. (5)

Based on this definition, the mean square convergence of (3)
is characterized by ρ = max{|λ2|2, |λn|2}, suggesting that the
weighted average consensus is achieved exponentially fast.

B. Topology Inference Mechanism

We consider a scenario where the participating agents are
reliable and the external eavesdroppers acquire observation
data sets to infer the system’s topology. Under the system
model (3), the quantity that best reflects the topology would
be the interaction matrix W . Estimating W is based on the
observations of the system’s convergence process. Denote the
observation slice matrix as Ya;b = [y(a), · · · , y(b)] and the
noise slice matrix Va;b = [v(a), · · · , v(b)]. It is easy to reach

Ya+1;b+1 = WYa;b −WVa;b + Va+1;b+1. (6)

For simple expressions, let Y = Yk0;kn−1 and Z = Yk0+1;kn .
Consider that the attackers adopt the classic least squares
method [8] [17] to estimate the topology, which aims to solve

min
Ŵ
‖ŴY − Z‖2F . (7)

When Y T is specific and column full rank, the optimal solution
of (7) is given by

Ŵ ∗ = ZY T(Y Y T)−1. (8)

Lemma 1. (Theorem 6 in [18]) The non-asymptotic error
bound of the least squares estimator Ŵ satisfies

lim
T→∞

‖Ŵ −W‖ = O(σ2
v), (9)

where σ2
v is the variance of observation noise, and T is the

observation number of the system.



C. Problem Formulation

As is shown in Lemma 1, the topology can be inferred
accurately by an attacker, indicating the system’s vulnerability.
In this paper, we consider preserving the actual topology of
the system by adding extra noises to the system states, i.e.,

x(k + 1) = Wx(k) + θ(k). (10)

Based on (10), we focus on the noise-adding mechanism of
θ(k) to protect the topology from being estimated by the
inference model (8), while maintaining the convergence of the
system dynamics. Mathematically, it can be formulated as

max
θ
‖Ŵ (θ)−W‖F (11a)

s.t. lim
k→∞

xi(k) = lim
k→∞

xj(k),∀i, j ∈ V. (11b)

This problem is quite challenging due to the following reasons.
First, the adding procedure needs to be implemented in a
distributed way, without relying on any global knowledge
about the system topology. Second, instead of adding noises
with a specific distribution, the added noise should be irregular
enough to make the estimated Ŵ far different from W , while
not hindering the convergence of the system. Accordingly, we
propose a hybrid distributed topology-preserving collaboration
algorithm, applying to both directed and undirected topologies.

III. ALGORITHM DESIGN

In this section, we propose a hybrid distributed topology-
preserving algorithm (hybrid DTCA) that runs within finite
iterations. The key idea and the detailed algorithm design are
contained in this section.

A. Key Idea

To fulfill the requirements of the formulated problem, we
consider that the added noise θ is a hybrid noise composed
of two independent parts, given by θ(k) = µ(k) + ω(k),
where µ(k) is a random term satisfying a specific distribution,
and ω(k) is a non-random disturbing term used to enhance
the irregularity of the system dynamics. This design form
is motivated by two aspects. First, it is straightforward and
common to introduce µ(k) to pollute the normal system
states, which increases the state variance and thus degrade
the inference performance of Ŵ , compared with the situation
where no noise is involved. Nevertheless, this kind of noise
still has an inherent statistical characteristic (e.g., zero mean
and bounded variance), which will bring minor benefits when
the observation scale of the attacker grows. Second, consid-
ering the noise µ(k) can be eliminated by outlier handling
through the filtering methods towards observation data, we
further leverage ω(k) to intentionally break the theoretical
boundaries that the system states should satisfy in normal
iteration, while free of the inherent statistical characteristic
limitation. Therefore, the combination of the two terms will
achieve dual protective effects in terms of the states’ statistical
randomness and the irregularity of the state evolution. Note
that both of the terms will affect the convergence rate of the
system states, which will be analyzed in the next section, along

with the error analysis of Ŵ under the proposed hybrid DTCA
algorithm.

B. Hybrid DTCA

Design of Random Term. Borrow the idea from [16], the
random term µ(k) can be designed based on a group of i.i.d.
Gaussian noises ϑ(k), where each element is with mean 0 and
variance σϑ. Then, µ(k) is given by

µ(k) =

{
ϑ(0), if k = 0

ϕkϑ(k)− ϕk−1ϑ(k − 1), otherwise,
(12)

where 0 < ϕ < 1 is an attenuation coefficient that guarantees
the convergence of the system.

Remark 1. Note that the noise sum ‖
∑k−1
t=0 W

k−t−1µ(t)‖
is strictly bounded to guarantee the state convergence and
µ(k) is of Gaussian distribution, the convergence rate of Ŵ

is O(
√

log T
T ), satisfying lim

T→∞
‖Ŵ −W‖ = O(σ2

v) [18]. The
demand for persevering topology is not fulfilled yet.

Design of Disturbing Term. The disturbing term is de-
signed with two goals: 1) alternatively add two complementary
noises, to increase the regression errors while ensuring the
convergence, and 2) set bounds of the noises to improve the
flatness of the iteration progress. The two-tuple data (i, k) is
selected into a set B, with probability p. Suppose that for the
i-th agent, the additive noise ω+

i (k) is added at time slot k if
(i, k) ∈ B, and an additive noise indicator bi(k) is given by:

bi(k) =

{
1, (i, k) ∈ B,
0, otherwise,

where “1” represents that there exists an additive noise.
To balance the effect of the additive noise on convergence,

a compensating noise ω−i (k + m|k) is imposed after m
iterations, where m ∈ N+ indicates the compensation gap.
In general, the expression of the extra noise to the original
state xi(k) will be

ωi(k) = ω+
i (k)bi(k) + ω−i (k|k −m)bi(k −m), (13)

where k and m can be chosen arbitrarily, and they are not
necessarily the same for each agent. As mentioned in Sec.
II, an agent’s state in the next iteration depends on its state
and neighbors’ states at present. Denote the state of agent i
in time slot k + 1 based on the regular iteration of xi(k) as
xri (k+1|k). Following the regular iteration process in (3), we
have xri (k+1|k) = Wixi(k). For simplicity, we denote xNi(k)
as the set of neighbors’ states xj(k),∀j ∈ Ni. Since W is a
row stochastic matrix, in the regular iteration, xri (k+1|k) will
have an inequality constraint

min{xNi
(k), xi(k)} ≤ xri (k + 1|k) ≤ max{xNi

(k), xi(k)},

which implies that xri (k + 1|k) will not exceed the extreme
values of xNi

(k) and xi(k).
In this way, we could characterize the relative size between

the additive noise ω+
i (k) and the states by utilizing a scaling



parameter α. The upper boundary and the lower boundary of
the additive noise become

β+
i (k) = α× (max{xNi

(k), xi(k)} − xri (k + 1|k)) (14a)

β−i (k) = α× (min{xNi
(k), xi(k)} − xri (k + 1|k)). (14b)

Note that α = 1 indicates that when the additive noise takes
the boundary value in the relative range, xi(k + 1) can reach
extreme value of its neighbors’ states, with α > 1 beyond
and α < 1 within. If the designed noises cause the violation
of the inequality constraints to xri (k + 1|k), the inference
error will be especially enlarged. We choose the additive noise
between the upper and lower bound to maintain a relative
size with the nodes’ states and ensure the flatness of the
system’s convergence. It can be proven that if αp

2 < 1, β+
i (k)

and β−i (k) are decaying in the sense of expectation. The
compensating noise is formulated as

ω−i (k +m|k) = −ω+
i (k). (15)

This part of the algorithm can be done in a distributed
manner because the calculation of compensating noise requires
only the agent’s historical additional noises but not in-degree
neighbors’ information. The value of m is enormously influ-
ential to the overall performance of the algorithm. The smaller
m is, the shorter the compensation gap is, resulting in a more
frequent and drastic change in the trajectory.

Combining the above two terms, we complete the design
of extra noise. In the design, µ(k) applies to increase the
variance of the estimate, which could be eliminated by filtering
methods in multi-round observation. On the other hand, ω(k)
offers disturbance, breaking the theoretical boundaries of the
states and deceiving the attackers into unveracious links. This
kind of noise could be disposed of by the polynomial fitting
method [19], while combining µ(k) helps blur the disturbance,
resulting in better concealment of the weight of the links and
the links themselves. The following pseudocode presents the
details of hybrid DTCA under limited time iteration. Suppose
the maximum iteration number is kmax.

IV. ALGORITHM PERFORMANCE ANALYSIS
This section presents the performance analysis of the pro-

posed algorithm, including the convergence rate and the non-
asymptotic error bound of the inference attack.

A. Convergence Analysis

When the hybrid DTCA is applied to the system, the added
noises to the agents will confuse not only the attackers but also
the agents in the neighborhood. To ensure the regular operation
of the system, convergence to the original consensus point is
the first thing to consider.

We can write x(k) in the following form:

x(k) = W kx(0) +

k−1∑
t=0

W k−t−1θ(t), (16)

which indicates that to ensure the original consensus point,
the overall noise θ(k) must satisfy the following formula:
limk→∞

∑k−1
t=0 W

k−t−1θ(t) = 0.

Algorithm 1: Hybrid DTCA
Input: x(0), wij , α, p, µ, ϕ
Output: Observation data set;
Initialization;
for k = 0 : kmax do

Generate v(k), µ(k) and b(k);
y(k) = x(k) + v(k);
for agent i do

if bi(k) == 1 then
Calculate β+

i (k) and β−i (k) as in (14a) and
(14b);

Choose the additive noise ω+
i (k) between

the bounds, i.e., ω+
i (k) ∈ [β−i (k), β+

i (k)];
end
Compute the compensating noise ω−i (k +m|k)

using (15);
end
Design θ(k) as in (12) and (13);
Update x(k + 1) by (10);

end

The influence of ω(k) is Wmω+(k −m) + ω−(k|k −m)
because the disturbing term shows in pairs. As mentioned in
Sec. II, the consensus point xc = pT1x(0) where p1 is the
first normalized left eigenvector, corresponding to eigenvalue
1. Thus we have pT1W = pT1 , leading to

pT1W
m+sω+(k)− pT1W sω+(k) = 0,∀s ∈ N+,

which shows that adding only the disturbing term ω(k), the
algorithm can be proved to reach the exact consensus point.

Furthermore, adding only the random term µ(k), an exact
consensus is also reached due to the analysis in [16]. Since
the two noise terms are linear superposition, it is proven that
the hybrid DTCA achieves an exact consensus.

Theorem 1. Given any x(0), an asymptotic weighted average
consensus is achieved exponentially fast using hybrid DTCA,
i.e., lim

k→∞
xi(k) = xc, where the mean square convergence rate

is related with the parameters ϕ, α and p in the algorithm,
and the second largest eigenvalue of WTW :

ρ = max{ϕ2, (
αp

2
)2, λ2(WTW )}.

Proof. Substitute x(k) for the expression of z(k) and cal-
culate Ez(k)Tz(k), we would have four terms with con-
vergence speeds ρ1 = λ2(WTW ), ρ2 = ϕ2, ρ3 =
max{ϕ2, λ2(WTW )} and ρ4 = (αp2 )2, respectively. One thus
completes the proof of the convergence rate, suggesting the
convergence rate is dependent on W and the noise terms.

B. Inference Error Analysis

Same as the problem formulation, we use the Frobenius
norm to describe the precision of the estimation Ŵ . To protect
the actual topology, we need to make the approximation error
‖Ŵ −W‖F as large as possible. Without loss of generality,



we suppose the observation data is Y (0, · · · , T ). Obtained
by (10), Y1;T = WY0;T−1 + Φ0;T−1, where the slice matrix
Φ0;T−1 = [φ(0), · · · , φ(T − 1)] and φ(k) = θ(k)−Wv(k) +
v(k + 1). As is in Sec. II, the topology’s best estimation is:

Ŵ = Y1;TY
T
0;T−1(Y0;T−1Y

T
0;T−1)−1.

Substitute WY0;T−1 + Φ0;T−1 for Y1;T , then we will have
Ŵ−W = Φ0;T−1Y

T
0;T−1(Y0;T−1Y

T
0;T−1)−1. The problem can

be formulated as a constrained optimization problem where the
additive noise is selected to maximize the inference error:

P1: max
ω(k)

∥∥∥Φ0;kY
T
0;k(Y0;kY

T
0;k)−1

∥∥∥
F

s.t. β−i (k) ≤ ω+
i (k) ≤ β+

i (k).
(17)

Theorem 2. (Policy of ω(k) design) The optimal solution of
Problem P1 in (17) is equal to the constrained boundary with
a larger absolute value, either β−(k) or β+(k).

Proof. Define Υ(0; k) = Y T
0;k(Y0;kY

T
0;k)−1 and split it into

ΥA(0; k) whose size is k×N and ΥB(0; k) whose size is 1×
N . Φ0;k is split into Φ(0; k−1) and φ(k). Thus the optimized
objective function of (17) can be broken down as∥∥∥∥[Φ(0; k − 1) | φ(k)]

[
ΥA(0; k)

ΥB(0; k)

]∥∥∥∥
F

=

√√√√ N∑
i=1

‖(Φi(0; k − 1)ΥA(0; k) + φi(k)ΥB(0; k))‖2F .

Hence, this optimization problem is decomposed into N
independent sub-optimization problems, i.e., each row’s Frobe-
nius norm optimization problems, which is given by

P2: max
ωi(k)

‖Φi(0; k − 1)ΥA(0; k) + φi(k)ΥB(0; k)‖F
s.t. β−i (k) ≤ ωi(k) ≤ β+

i (k).
(18)

Since the objective function of (18) is a convex quadratic
function of φi(k), it is maximized when φi(k) reaches its
extreme, i.e., ωi(k) equals one of the restrictions. Furthermore,
as the Frobenius norm is always positive and restricted, the
overall target of (17) is accomplished if and only if each
independent optimization problem in (18) is maximized.

Corollary 1. (Gaussian matrices, deviation; Corollary 5.35
in [20]). Let A be an N × n Gaussian matrix, and smin(A),
smax(A) be the smallest and the largest singular values of A,
respectively. Then for every t ≥ 0, with probability at least
1− 2 exp(−t2/2) one has
√
N −
√
n− t ≤ smin(A) ≤ smax(A) ≤

√
N +
√
n+ t. (19)

Proof. The conclusion follows from Theorem 5.32 and Propo-
sition 5.34 in [20].

We define Ψ0;k = Y0;kY
T
0;k, and there exists Ψdn and

Ψup satisfying 0 ≺ Ψdn � Ψ0;k � Ψup to help with
the error bound processing. Corollary 1 is needed to deduce
the asymptotic bound of this algorithm setting with different
observation horizons. The following Theorem infers the rela-
tionship between the asymptotic bound and the extra noises,

TABLE I
COMPARISON OF THE NON-ASYMPTOTIC ERROR BOUNDS

Input Design ‖Ŵ −W‖
θ(k) = 0 O(σ2

v)

θ(k) = µ(k) O(σ2
v) +O(

√
log T
T

) (Theorem 6 in [18])

θ(k) = µ(k) + ω(k) O(σ2
v) +O

((
E[θ] +

√
D[θ]/δ

)2)

while the hybrid design of θ(k) = µ(k)+ω(k) has been shown
to be more effective than either noise term alone at enlarging
the mean and variance of the regression error.

Theorem 3. (Sensitivity; improvement of Lemma 1) Let extra
noise θ = {θi(k)}i∈V,k=0,1,··· have finite expected value E[θ]
and variance D[θ]. Applying hybrid DTCA, the non-asymptotic
error bound of the least squares estimator is up to

‖Ŵ −W‖ ∼ O(σ2
v) +O

((
E[θ] +

√
D[θ]/δ

)2
)
. (20)

Proof. The detailed deduction of (9) can be found in Theorem
6 in [18], and (20) could be seen as an improved version of
(9), adding the designed noises µ(k) and ω(k). Here we would
omit the redundant proof and focus on the effect of θ(k).
Let the error matrix EW = Φ0;T−1Y

T
0;T−1(Y0;T−1Y

T
0;T−1)−1

and matrix M = Φ0;T−1Y
T
0;T−1 =

∑T
k=1 φ(k)yT(k). Using

Chebyshev Inequity, for any real number δ > 0, we have
Pr
{
|θ − E[θ]| ≥ δ

√
D[θ]

}
≤ 1/δ2. Since ‖M‖ ≤ ‖M‖F ,

we have ‖M‖ ≤ N2(E[θ] +
√

D[θ]/δ)2 with probability at
least 1− δ. Together with

∥∥(Y0;T−1Y
T
0;T−1)−1

∥∥ ≤ 1
smin(Ψdn) ,

‖EW ‖ ≤ ‖M‖
∥∥(Y0;T−1Y

T
0;T−1)−1

∥∥
≤ N2

smin(Ψdn)
(E[θ] +

√
D[θ]/δ)2,

completes the proof of the extra noises.

Table I shows the comparison of the non-asymptotic error
bounds under different noise designs.

V. SIMULATION

A. Simulation Setting

A directed network with ten agents is randomly constructed,
reflecting the system’s interaction topology. Assign all the
agents with random initial states, and start the iteration under
hybrid DTCA with different parameter configurations. During
the iteration process, we experiment on different parameter
configurations in hybrid DTCA, namely α and σϑ, to evaluate
the algorithm’s performance under inference attacks.

B. Results and Analysis

Without loss of generality, we first verify the proposed
algorithm’s performance when the attackers collect the in-
formation all the time. In the real scenario, the observation
time can be limited as the attackers may not be able to
keep tracking the system from the beginning to the end. We
then verify the algorithm’s performance in this situation. Fig.
1 and Fig. 2 present the hybrid DTCA’s performance for



Fig. 1. Error performance with all time slots observation

Fig. 2. Error performance with limited time slots observation

all time slots observation and limited time slots observation,
respectively. Each figure presents the hybrid algorithm’s per-
formance, where the vertical axis shows the Frobenius norm
inferred topology’s approximation error and the horizontal axis
indicates the parameter configurations. In the experiment, we
set 5 × 5 groups of parameter configurations of the random
term and the disturbing term for the hybrid DTCA, and the
choice of the parameter configuration is based on the initial
states of the agents and the maximum iteration number.

All Time Slots Observation. As we can see in Fig. 1, the
overall trend of the estimation errors is in line with intuition,
which is, the larger the variance of both noise terms is, the
more inaccurate the regression will be. In particular, when
there is no disturbance, the topology inference using least
squares estimation can be highly accurate as the error bars
start with zero. The parameters play significant roles in the
algorithms as they affect the trajectories of agents’ states
and the estimation error of topology inference. Also, all the
different parameter configurations have decent performance,
illustrating the flexibility of the algorithms.

Limited Time Slots Observation. In this part, we select
only the data from the (N + 1) most recent iterations (min-
imum data requirements for the least squares method) as the
information source of the attackers. As we can see in Fig.
2, the performance of the inference attack when α = 0 and
µ = 0 is not zero because the limited time slots cause the
loss of information. Our algorithm is still effective in limited
time slots observation, and the combination of two noise terms
outperforms a single noise term alone.

Overall, the results can prove that our topology-preserving
algorithm works well and performs better than with only the
random term or disturbing term.

VI. CONCLUSION

In this paper, we propose a distributed topology-preserving
collaboration algorithm: hybrid DTCA, to secure the system
against topology inference attacks. In our algorithm, designed

noises are added into the system to enlarge the topology
inference error while guaranteeing the accuracy of the system’s
convergence. Extensive simulations verify the effectiveness of
the proposed algorithm. Future directions include extending
the algorithm to a more general dynamical network with
switching topology and exploring relations between the al-
gorithm’s cost and performance.
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